What is the trigonometric form of (12-2i) (12−2i)?
1 Answer
Mar 11, 2016
Explanation:
Using the following formulae :
• r^2 = x^2 + y^2∙r2=x2+y2
• theta = tan^-1 (y/x)∙θ=tan−1(yx) here x = 12 and y = - 2
hence
r^2 = 12^2 + (-2)^2 = 148 rArr r = sqrt148 = 2sqrt37r2=122+(−2)2=148⇒r=√148=2√37 and
theta = tan^-1(-2/12) ≈ -0.165" radians " θ=tan−1(−212)≈−0.165 radians
rArr (12-2i) = 2sqrt37 [cos(-0.165) + isin(-0.165) ]⇒(12−2i)=2√37[cos(−0.165)+isin(−0.165)]