What is the trigonometric form of (-2+9i) ?

1 Answer
Jan 1, 2016

sqrt(85)(cos(tan^-1(-9/2))+isin(tan^-1(-9/2)))

Explanation:

(-2+9i)

rcos(theta)=-2
rsin(thea) = 9

Squaring both and adding

r^2cos^2(theta) = 4
r^2sin^2(theta) = 81

r^2cos^2(theta)+r^2sin^2(theta) = 4+81
r^2(cos^2(theta)+sin^2(theta))=85
r^2=85
r=sqrt(85)

rsin(theta)/rcos(theta) = 9/-2
tan(theta) = -9/2

theta = tan^-1(-9/2)

The complex number in trigonometric form is

sqrt(85)(cos(tan^-1(-9/2))+isin(tan^-1(-9/2)))