What is the trigonometric form of (-4+3i) ?

1 Answer
Apr 18, 2016

5costheta+i5sintheta, where theta=tan^(-1)(-3/4)

Explanation:

Trigonometric form of a complex number a+bi is rcostheta+isintheta.

As such here, rcostheta=-4 and rsintheta=3.

Squaring the two and adding

r^2(cos^2theta+sin^2theta)=(-4)^2+3^2=16+9=25

or r^2=25 and r=5

Dividing we get (rsintheta)/(rcostheta)=-3/4# or

tantheta=-3/4 or theta=tan^(-1)(-3/4)

Hence a+bi in trigonometric form is 5costheta+i5sintheta, where theta=tan^(-1)(-3/4)