What is the trigonometric form of (-6+9i) ?

1 Answer
Jun 1, 2018

In trigonometric form expressed as
sqrt117(cos(123.69)+isin(123.69))

Explanation:

Z=a+ib . Modulus: |Z|=sqrt (a^2+b^2);

Argument:theta=tan^-1(b/a) Trigonometrical form :

Z =|Z|(costheta+isintheta)

Z=(-6+9i). Modulus |Z|=sqrt((-6 )^2+9^2)= sqrt 117

Argument: tan alpha= 9/6=3/2:. alpha=tan^-1 (3/2)=56.31^0

Z lies on second quadrant, so , theta =180-alpha

:. theta= 180-56.31=123.69^0

:. Z=sqrt117(cos(123.69)+isin(123.69))

In trigonometric form expressed as

sqrt117(cos(123.69)+isin(123.69))[Ans]