What is the trigonometric form of (-6-i) ?
1 Answer
Mar 8, 2016
Explanation:
Using the following formulae:
• r^2 = x^2 + y^2
• theta = tan^-1(y/x) here x = -6 and y = -1
r^2 = (-6)^2+(-1)^2 = 37 rArr r = sqrt37 and
theta = tan^-1((-1)/(-6)) = tan^-1(1/6) ≈0.165 " radians "
rArr (-6-i) = sqrt37(cos(0.165) + isin(0.165))