What is the trigonometric form of (-6-i) ?

1 Answer
Mar 8, 2016

sqrt37(cos(0.165) + isin(0.165))

Explanation:

Using the following formulae:

• r^2 = x^2 + y^2

• theta = tan^-1(y/x)

here x = -6 and y = -1

r^2 = (-6)^2+(-1)^2 = 37 rArr r = sqrt37

and theta = tan^-1((-1)/(-6)) = tan^-1(1/6) ≈0.165 " radians "

rArr (-6-i) = sqrt37(cos(0.165) + isin(0.165))