#81^(x^3 + 2x^2) = 27^((5x)/3)#
Note: #3^4 = 81 and 3^3 = 27#
#3^(4(x^3 + 2x^2)) = 3^(3((5x)/3))#
#cancel3^(4(x^3 + 2x^2)) = cancel3^(3((5x)/3))#
#4(x^3 + 2x^2) = 3((5x)/3)#
#4(x^3 + 2x^2) = cancel3((5x)/cancel3)#
#4x^3 + 8x^2 = 5x#
Dividing through by #x#
#(4x^3)/x + (8x^2)/x = (5x)/x#
#(4x^(cancel3^2))/cancelx + (8x^(cancel2^1))/cancelx = (5cancelx)/cancelx#
#4x^2 + 8x = 5#
#4x^2 + 8x - 5 = 0#
Using Factorisation Method..
#2 and 10-> "factors"#
Proof: #10x - 2x = 8x and 10 xx -2 = -20#
Therefore;
#4x^2- 2x + 10x - 5 = 0#
Grouping the factors;
#(4x^2- 2x) + (10x - 5) = 0#
Factorising;
#2x(2x - 1) + 5(2x - 1) = 0#
Seperating the factors;
#(2x - 1) (2x + 5) = 0#
#2x - 1 = 0 or 2x + 5 = 0#
#2x = 1 or 2x = -5#
#x = 1/2 or x = -5/2#