81^(x^3 + 2x^2) = 27^((5x)/3)
Note: 3^4 = 81 and 3^3 = 27
3^(4(x^3 + 2x^2)) = 3^(3((5x)/3))
cancel3^(4(x^3 + 2x^2)) = cancel3^(3((5x)/3))
4(x^3 + 2x^2) = 3((5x)/3)
4(x^3 + 2x^2) = cancel3((5x)/cancel3)
4x^3 + 8x^2 = 5x
Dividing through by x
(4x^3)/x + (8x^2)/x = (5x)/x
(4x^(cancel3^2))/cancelx + (8x^(cancel2^1))/cancelx = (5cancelx)/cancelx
4x^2 + 8x = 5
4x^2 + 8x - 5 = 0
Using Factorisation Method..
2 and 10-> "factors"
Proof: 10x - 2x = 8x and 10 xx -2 = -20
Therefore;
4x^2- 2x + 10x - 5 = 0
Grouping the factors;
(4x^2- 2x) + (10x - 5) = 0
Factorising;
2x(2x - 1) + 5(2x - 1) = 0
Seperating the factors;
(2x - 1) (2x + 5) = 0
2x - 1 = 0 or 2x + 5 = 0
2x = 1 or 2x = -5
x = 1/2 or x = -5/2