What is the vector representation, parametric equations and rectangular equations for the line through the points P(3,2,1) and Q(-1,2,4)?
1 Answer
vecr=<<3,2,1>> + lambda <<-4,0,3>>→r=⟨3,2,1⟩+λ⟨−4,0,3⟩ , or,vecr=((3),(2),(1)) + lamda ((-4),(0),(3))
Parametric Equation:
{: (x=3-4lamda), (y=2), (z=1+3lamda) :}
Cartessia Equation:
(3-x)/4 = (z-1)/3 " "; y=2
Explanation:
We have:
vec(OP)=<<3,2,1>>
vec(OQ)=<<-1,2,4>>
So a line passing through
vec(PQ) = vec(OQ) - vec(OP)
" "= <<-1-3,2-2,4-1>>
" "= <<-4,0,3>>
The vector equation of a straight line (using
\ \ \ \ \ vecr=veca + lambda vecd
:. vecr=<<3,2,1>> + lambda <<-4,0,3>>
Or, in column notation
vecr=((3),(2),(1)) + lamda ((-4),(0),(3))
For parametric equations we jus extract the
{: (x=3-4lamda), (y=2+0lamda), (z=1+3lamda) :} => {: (x=3-4lamda), (y=2), (z=1+4lamda) :}
For Cartesian equations we use the parameters form and eliminate the parameter:
{: (x=3-4lamda), (y=2), (z=1+4lamda) :} => {: (lamda=(3-x)/4), (y=2), (lamda=(1-z)/3) :}