What is the vector representation, parametric equations and rectangular equations for the line through the points P(3,2,1) and Q(-1,2,4)?

1 Answer
Jan 4, 2017

vecr=<<3,2,1>> + lambda <<-4,0,3>>r=3,2,1+λ4,0,3, or, vecr=((3),(2),(1)) + lamda ((-4),(0),(3))

Parametric Equation:

{: (x=3-4lamda), (y=2), (z=1+3lamda) :}

Cartessia Equation:

(3-x)/4 = (z-1)/3 " "; y=2

Explanation:

We have:

vec(OP)=<<3,2,1>>
vec(OQ)=<<-1,2,4>>

So a line passing through P and Q will be in the direction;

vec(PQ) = vec(OQ) - vec(OP)
" "= <<-1-3,2-2,4-1>>
" "= <<-4,0,3>>

The vector equation of a straight line (using vec(OP), but equally we could use vec(OQ)) is given by;

\ \ \ \ \ vecr=veca + lambda vecd
:. vecr=<<3,2,1>> + lambda <<-4,0,3>>

Or, in column notation

vecr=((3),(2),(1)) + lamda ((-4),(0),(3))

For parametric equations we jus extract the x, y and z components, leaving lmda# is the parameter:

{: (x=3-4lamda), (y=2+0lamda), (z=1+3lamda) :} => {: (x=3-4lamda), (y=2), (z=1+4lamda) :}

For Cartesian equations we use the parameters form and eliminate the parameter:

{: (x=3-4lamda), (y=2), (z=1+4lamda) :} => {: (lamda=(3-x)/4), (y=2), (lamda=(1-z)/3) :}

:. (3-x)/4 = (z-1)/3 " "; y=2