What is the vertex of y= 1/5x^2- (x/2-3)^2 ?

1 Answer
Jul 12, 2018

(30,36).

Explanation:

We have, y=1/5x^2-(x/2-3)^2.

:. y=x^2/5-(x^2/4-3x+9),

=x^2/5-x^2/4+3x-9,

#:. y=-x^2/20+3x-9

graph{-x^2/20+3x-9 [-150.1, 150.3, -75, 75]} #,

or, y+9=-x^2/20+3x.

:. 20(y+9)=-x^2+60x.

Completing square on the R.H.S., we get,

20y+180=(-x^2+2xx30x-30^2)+30^2.

:. 20y+180-900=-x^2+60x-900,

i.e., 20y-720=-(x^2-60x+900),

or, 20(y-36)=-(x-30)^2.

rArr (y-36)=-1/20(x-30)^2.

Consequently, the vertex is (30,36).