What is the vertex of # y= 2(x-5)^2-x^2-3x-1#?

1 Answer
Jan 29, 2018

#(23/2,-333/4)#

Explanation:

#"require to express y in standard form"#

#•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0#

#rArry=2(x^2-10x+25)-x^2-3x-1#

#color(white)(rArry)=2x^2-20x+50-x^2-3x-1#

#color(white)(rArry)=x^2-23x+49larrcolor(blue)"in standard form"#

#"with "a=1,b=-23" and "c=49#

#"then the x-coordinate of the vertex is"#

#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#

#rArrx_(color(red)"vertex")=-(-23)/2=23/2#

#"substitute this value into the equation for y"#

#y_(color(red)"vertex")=(23/2)^2-23(23/2)+49#

#color(white)(xxxx)=529/4-529/2+49=-333/4#

#rArrcolor(magenta)"vertex "=(23/2,-333/4)#