What is the vertex of y= -(2x-1)^2+x^2-x+3?

1 Answer
Apr 13, 2016

"vertex "->(x,y)->(1/2,11/4)

Explanation:

Multiply out the brackets giving:

y=-(4x^2-4x+1)+x^2-x+3

Multiply everything inside the bracket by (-1) giving

y=-4x^2+4x-1+x^2-x+3

y=-3x^2+3x+2

Write as: y=-3(x^2+3/(-3)x)+2

=>y=-3(x^2-x)+2

Consider the coefficient -1 from -x inside the brackets

color(blue)(x_("vertex")=(-1/2)xx(-1)=+1/2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute for #x_("vertex") in the equation

color(brown)(y=-3x^2+3x+2" "->" " y=-3(color(blue)(1/2))^2+3(color(blue)(1/2) )+2

color(blue)(y_("vertex")= 2 3/4 = 11/4)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("vertex "->(x,y)->(1/2,11/4)

Tony BTony B