What is the vertex of y=-2x^2 - 8x + 9y=2x28x+9?

1 Answer
Dec 15, 2015

Vertex: (-2,17)(2,17)

Explanation:

Our objective will be to convert the given equation into "vertex form":
color(white)("XXX")y=m(x-a)^2+bXXXy=m(xa)2+b with vertex at (a,b)(a,b)

Given
color(white)("XXX")y=-2x^2-8x+9XXXy=2x28x+9

Extract the mm factor
color(white)("XXX")y=(-2)(x^2+4x)+9XXXy=(2)(x2+4x)+9

Complete the square:
color(white)("XXX")y=(color(blue)(-2))(x^2+4xcolor(blue)(+4))+9color(red)(+8)XXXy=(2)(x2+4x+4)+9+8

Re-write the xx expression as a binomial square
color(white)("XXX")y=(-2)(x+2)^2+17XXXy=(2)(x+2)2+17

Convert the squared binomial into form (x-a)(xa)
color(white)("XXX")y=(-2)(x-(-2))+17XXXy=(2)(x(2))+17
which is the vertex form with vertex at (-2,17)(2,17)
graph{-2x^2-8x+9 [-16.13, 15.93, 6, 22.01]}