What is the vertex of y=3x25x(3x2)2?

2 Answers
Dec 30, 2017

The vertex is (724,14348).

Explanation:

First expand (3x2)2=9x212x+4.

Substituting that in we have:

y=3x25x(9x212x+4)

Distribute the negative:

y=3x25x9x2+12x4

Collect like terms:

y=12x2+7x4

The vertex is (h,k) where h=b2a and k is the value of y when h is substituted.

h=72(12)=724.

k=12(724)2+7(724)4=14348 (I used a calculator...)

The vertex is (724,14348).

Dec 30, 2017

(724,14348)

Explanation:

we require to express in standard form

y=3x25x(9x212x+4)

y=3x25x9x2+12x4

y=12x2+7x4in standard form

given the equation of a parabola in standard form then
the x-coordinate of the vertex is

xvertex=b2a

here a=12,b=7,c=4

xvertex=724=724

substitute this value into the equation for y

y=12(724)2+7(724)4=14348

vertex =(724,14348)