What is the vertex of y=-3x^2+5x+6y=3x2+5x+6?

3 Answers
Jun 20, 2017

0.833, 8.0830.833,8.083

Explanation:

The vertex can be found using differentiation, differentiating the equation and solving for 0 can determine where the x point of the vertex lies.

dy/dx (-3x^2 + 5x +6) = -6x + 5dydx(3x2+5x+6)=6x+5
-6x + 5 = 0, 6x = 5, x = 5/66x+5=0,6x=5,x=56

Thus the xx coordinate of the vertex is 5/656
Now we can substitute x = 5/6x=56 back into the original equation and solve for yy.

y = -3(5/6)^2 + 5(5/6) + 6y=3(56)2+5(56)+6
y = 8.0833y=8.0833

Jun 20, 2017

(5/6,97/12)(56,9712)

Explanation:

"for a parabola in standard form " y=ax^2+bx+cfor a parabola in standard form y=ax2+bx+c

"the x-coordinate of the vertex is " x_(color(red)"vertex")=-b/(2a)the x-coordinate of the vertex is xvertex=b2a

y=-3x^2+5x+6" is in standard form"y=3x2+5x+6 is in standard form

"with " a=-3,b=5,c=6with a=3,b=5,c=6

rArrx_(color(red)"vertex")=-5/(-6)=5/6xvertex=56=56

"substitute this value into the function for y-coordinate"substitute this value into the function for y-coordinate

rArry_(color(red)"vertex")=-3(5/6)^2+5(5/6)+6=97/12yvertex=3(56)2+5(56)+6=9712

rArrcolor(magenta)"vertex "=(5/6,97/12)vertex =(56,9712)

Jun 20, 2017

(5/6,97/12)(56,9712)

Explanation:

y=ax^2+bx+cy=ax2+bx+c [Standard Form of a Quadratic Equation]
y=-3x^2+5x+6y=3x2+5x+6

a = -3a=3
b = 5b=5
c = 6c=6

TO FIND THE X-VALUE OF THE VERTEX:
Use the formula for the axis of symmetry by substituting values for bb and aa:
x = (-b)/(2a)x=b2a
x = (-5)/(2(-3))x=52(3)
x = (-5)/-6x=56
x = 5/6x=56

TO FIND THE Y-VALUE OF THE VERTEX:
Use the formula below by substituting values for aa, bb, and cc:
y = (-b^2)/(4a)+cy=b24a+c
y = (-(5)^2)/(4(-3))+6y=(5)24(3)+6
y = (-25)/(-12)+6y=2512+6
y = 25/12+72/12y=2512+7212
y = 97/12y=9712

Express as a coordinate.
(5/6,97/12)(56,9712)