What is the vertex of y= (x-3)^2-2x^2-x-2y=(x3)22x2x2?

1 Answer
Aug 31, 2017

vertex at: (-3 1/2,+19 1/4)(312,+1914)

Explanation:

Given
color(white)("XXX")y=color(magneta)((x-3)^2)-2x^2-x-2XXXy=(x3)22x2x2

Expanding
color(white)("XXX")y=color(magenta)(x^2-6x+9)-2x^2-x-2XXXy=x26x+92x2x2
and simplifying
color(white)("XXX")y=-x^2-7x+7XXXy=x27x+7

We would like to convert this into vertex form: y=color(green)m(x-color(red)a)^2+color(blue)by=m(xa)2+b
with vertex at (color(red)a,color(blue)b)(a,b)

First extract the color(green)mm factor from the first 2 terms
color(white)("XXX")y=color(green)(""(-1))(x^2+7x)+7XXXy=(1)(x2+7x)+7
Complete the square
color(white)("XXX")y=color(green)(""(-1))(x^2+7xcolor(brown)(+(7/2)^2))+7color(brown)(-color(green)(""(-1))(7/2)^2)XXXy=(1)(x2+7x+(72)2)+7(1)(72)2

color(white)("XXX")y=color(green)(""(-1))(x+7/2)^2+7+49/4XXXy=(1)(x+72)2+7+494

color(white)("XXX")y=color(green)(""(-1))(x-color(red)(""(-7/2)))^2+color(blue)(77/4)XXXy=(1)(x(72))2+774
which is the vertex form with vertex at (color(red)(-7/2),color(blue)(77/4))=(color(red)(-3 1/2),color(blue)(19 1/4))(72,774)=(312,1914)