What is the vertex of y= (x-3)^2-4x^2-x+4y=(x3)24x2x+4?

1 Answer
May 16, 2017

"Vertex"(-6/7,823/49)Vertex(67,82349)

Explanation:

y=(x-3)^2-4x^2-x+4y=(x3)24x2x+4

"1-take derivative of the function with respect to x"1-take derivative of the function with respect to x

(d y)/(d x)=2(x-3)*1-8x-1dydx=2(x3)18x1

"1-equalize with zero and solve for x"1-equalize with zero and solve for x

2(x-3)-8x-1=02(x3)8x1=0

2x-6-8x-1=02x68x1=0

-6x-7=06x7=0

-6x=76x=7

x=-6/7x=67

"write x=-6/7 in the original equation and calculate for y"write x=-6/7 in the original equation and calculate for y

y=(-6/7-3)^2-4(-6/7)^2-(-6/7)+4y=(673)24(67)2(67)+4

y=(-27/7)^2-4(36/49)+6/7+4y=(277)24(3649)+67+4

y=729/49-144/49+34/7y=7294914449+347

y=585/49+34/7y=58549+347

y=585/49+238/49y=58549+23849

y=823/49y=82349

y=16.8y=16.8