What is x if 3x - sqrt(2(x-3)^2) = 2x + 7-5x3x2(x3)2=2x+75x?

1 Answer
Aug 4, 2018

x_1=(72+22sqrt2)/(34*2)=(36+11sqrt2)/34x1=72+222342=36+11234 and x_2=(72-22sqrt2)/(34*2)=(36-11sqrt2)/34x2=72222342=3611234

Explanation:

3x-sqrt(2*(x-3)^2)=2x+7-5x3x2(x3)2=2x+75x

3x-sqrt(2*(x-3)^2)=7-3x3x2(x3)2=73x

3x+3x-7=sqrt(2*(x-3)^2)3x+3x7=2(x3)2

6x-7=sqrt(2*(x-3)^2)6x7=2(x3)2

(6x-7)^2=2*(x-3)^2(6x7)2=2(x3)2

36x^2-84x+49=2*(x^2-6x+9)36x284x+49=2(x26x+9)

36x^2-84x+49=2x^2-12x+1836x284x+49=2x212x+18

34x^2-72x+31=034x272x+31=0

Delta=(-72)^2-4*34*31=968=(22sqrt2)^2

Hence x_1=(72+22sqrt2)/(34*2)=(36+11sqrt2)/34 and x_2=(72-22sqrt2)/(34*2)=(36-11sqrt2)/34