What the is the polar form of 2 = -x-5x^2y-x/y +y^2 ?

1 Answer
Oct 15, 2017

5r^3sinthetacos^2theta-r^2sin^2theta+rcostheta+2+cottheta=0

Explanation:

The relation between polar coordinates (r,theta) and Cartesian or rectangular coordinates (x,y) is given by

x=rcostheta and y=rsintheta

Hence, 2=-x-5x^2y-x/y+y^2 can be written as

2=-rcostheta-5r^2cos^2thetarsintheta-(rcostheta)/(rsintheta)+r^2sin^2theta

or 2=-rcostheta-5r^3sinthetacos^2theta-cottheta+r^2sin^2theta

or 5r^3sinthetacos^2theta-r^2sin^2theta+rcostheta+2+cottheta=0