What the is the polar form of y^2 = (x-1)^2/y-x^2 ?

1 Answer
Jan 5, 2017

r^3sintheta-r^2cos^2theta+2rcostheta-1=0

Explanation:

The relation between polar coordinates (r,theta) and corresponding Cartesian coordinates (x,y) is given by

x=rcostheta, y=rsintheta and r^2=x^2+y^2.

Hence, y^2=((x-1)^2)/y-x^2 can be written as

(rsintheta)^2=((rcostheta-1)^2)/(rsintheta)-(rcostheta)^2

or r^2sin^2theta=((r^2cos^2theta-2rcostheta+1))/(rsintheta)-r^2cos^2theta

or r^2sin^2theta+r^2cos^2theta=((r^2cos^2theta-2rcostheta+1))/(rsintheta)

or r^2=((r^2cos^2theta-2rcostheta+1))/(rsintheta)

or r^3sintheta-r^2cos^2theta+2rcostheta-1=0