What the is the polar form of y = x^2-x/y^2 +xy^2 y=x2xy2+xy2?

1 Answer
May 2, 2018

r^2(rcos^2theta+rcosthetasin^2theta-sintheta)=cotthetacscthetar2(rcos2θ+rcosθsin2θsinθ)=cotθcscθ

Explanation:

For this we will use:
x=rcosthetax=rcosθ
y=rsinthetray=rsinthetra

rsintheta=(rcostheta)^2-(rcostheta)/(rsintheta)^2+r^2costhetasin^2thetarsinθ=(rcosθ)2rcosθ(rsinθ)2+r2cosθsin2θ

rsintheta=r^2cos^2theta-(cotthetacsctheta)/r+r^2costhetasin^2thetarsinθ=r2cos2θcotθcscθr+r2cosθsin2θ

r^2sintheta=r^3cos^2theta-cotthetacsctheta+r^3costhetasin^2thetar2sinθ=r3cos2θcotθcscθ+r3cosθsin2θ

r^3cos^2theta+r^3costhetasin^2theta-r^2sintheta=cotthetacscthetar3cos2θ+r3cosθsin2θr2sinθ=cotθcscθ

r^2(rcos^2theta+rcosthetasin^2theta-sintheta)=cotthetacscthetar2(rcos2θ+rcosθsin2θsinθ)=cotθcscθ

This cannot be simplified further and has to be left as an implicit equation.