Where does the graph of y = 2x^2 + x − 15 cross the x-axis?

2 Answers
Jun 2, 2015

Cutting the xx axis means y=0y=0
Which means 2x²+x-15=0

We are going to seek the Delta :
The equation is of the form ax²+bx+c=0
a=2 ; b=1 ; c=-15

Delta=b²-4ac
Delta=1²-4*2*(-15)
Delta=1+120
Delta=121 ( =sqrt11 )

x_1=(-b-sqrtDelta)/(2a)

x_1=(-1-11)/4

x_1=-12/4

x_1=-3

x_2=(-b+sqrtDelta)/(2a)

x_2=(-1+11)/4

x_2=10/4

x_2=5/2

Thus, the function cuts the x axis in x=-3 and x=5/2

graph{2x^2+x-15 [-10, 10, -5, 5]}

Jun 2, 2015

y = 2x^2+x-15 = (2x-5)(x+3)

y=0 when x = 5/2 or x=-3

so the graph crosses the x-axis at (-3, 0) and (5/2, 0)