x^3+24x-16x3+24x16 [0,4] verify mean value theorem?

1 Answer
May 2, 2018

We seek to verify the Mean Value Theorem for the function

f(x) = x^3+24x-16f(x)=x3+24x16 on the interval [0,4][0,4]

The Mean Value Theorem, tells us that if f(x)f(x) is differentiable on a interval [a,b][a,b] then EE \ c in [a,b] st:

f'(c) = (f(b)-f(a))/(b-a)

So, Differentiating wrt x we have:

f'(x) = 3x^2 + 24

And we seek a value c in [0,4] st: f'(c) = (f(4)-f(0))/(4-0)

:. 3c^2 + 24 = ((64+96-16)-(0+0-16))/(4-0)

:. 3c^2 + 24 = 160/4

:. 3c^2 + 24 = 40

:. 3c^2 = 16

:. c^2 = 16/3

:. c = +- (4sqrt(3))/3

And we require that c in [0,4], so we choose c=(4sqrt(3))/3