How do you use chain rule to find the derivative of y=2csc3(x)?

1 Answer
Mar 1, 2015

You can easily illustrate the chain rule using Leibniz notation

Let y=2u3 then dydu=6u2

Let u=csc(w) then dudw=csc(w)cot(w)

Let w=x then dwdx=12x

Now the chain rule is

dydx=dydududwdwdx

dydx=6u2(csc(w)cot(w))12x

Remember that u=csc(w) and w=x

dydx=6csc2(x)(csc(x)cot(x))(12x)

Some simplifying

dydx=3csc3(x)cot(x)x