How do you use chain rule to find the derivative of y = 2 csc^3(sqrt(x)) ?

1 Answer
Mar 1, 2015

You can easily illustrate the chain rule using Leibniz notation

Let y=2u^3 then dy/(du)=6u^2

Let u=csc(w) then (du)/(dw)=-csc(w)cot(w)

Let w=sqrt(x) then (dw)/(dx)=1/(2sqrt(x))

Now the chain rule is

dy/dx=(dy)/(du)(du)/(dw)(dw)/(dx)

dy/dx=6u^2(-csc(w)cot(w))1/(2sqrt(x))

Remember that u=csc(w) and w=sqrt(x)

dy/dx=6csc^2(sqrt(x))(-csc(sqrt(x))cot(sqrt(x)))(1/(2sqrt(x)))

Some simplifying

dy/dx=(-3csc^3(sqrt(x))cot(sqrt(x)))/sqrt(x)