Question #24247

1 Answer
Mar 30, 2015

P(a,b) = (a!)/((a-b)!)
where a! = a xx (a-1) xx(a-2)xx(a-3)xx ....xx3 xx 2 1
and (a-b)! = (a-b) xx (a-b-1) xx (a-b-2)xx .... xx 2 xx1

So
P(n,r) =(n!)/((n-r)!)
and
P(n-1,r-1) = ((n-1)!)/(((n-1)-(r-1))!) = ((n-1)!)/((n-r)!)
so

n*P(n-1,r-1)

= ((n)(n-1)!)/((n-r)!)

= (n xx (n-1) xx (n-2) xx ....xx2 xx1)/((n-r)!)

= (n!)/((n-r)!)

=P(n,r)