How do you prove tan(x)1tan(x)+1=1cot(x)1+cot(x)?

2 Answers
Apr 19, 2015

Start off by cross multiplying

(tanx1)(1+cotx)=(tanx+1)(1cotx)

Expand each side using FOIL

tanx+tanxcotx1cotx
=tanxtanxcotx+1cotx

Since tanx and cotx are reciprocals

tanxcotx=1

Now we can write

tanx+11cotx=tanx1+1cotx

Simplifying each side

tanxcotx=tanxcotx

The right hand side and left hand side are the same