How do you prove cos2θ = cos²θ - sin²θ?

1 Answer
May 23, 2015

It depends where you want to start.

If you know the Taylor series for e^z, sin theta and cos theta, together with the basic properties of i = sqrt(-1), then you can easily find that:

e^(itheta) = cos theta + i sin theta

Then:

cos 2theta + isin 2theta = e^(2itheta) = (e^(itheta))^2

= (cos theta + isin theta)^2

= cos^2theta + 2i cos theta sin theta + i^2 sin^2 theta

= cos^2theta + 2i cos theta sin theta - sin^2 theta

= (cos^2theta - sin^2 theta) + i (2cos theta sin theta)

Comparing the real and imaginary parts we get two formulae for the price of one:

cos 2theta = cos^2 theta - sin^2 theta

sin 2theta = 2cos theta sin theta