How do you prove sin(A+B)sin(AB)=sin2Asin2B?

1 Answer
May 25, 2015

The standard formula for sin(A+B) is:

sin(A+B)=sin(A)cos(B)+cos(A)sin(B)

Now sin(B)=sin(B) and cos(B)=cos(B), so

sin(AB)=sin(A)cos(B)cos(A)sin(B)

So:

sin(A+B)sin(AB)

=(sinAcosB+cosAsinB)(sinAcosBcosAsinB)

=(sinAcosB)2(cosAsinB)2

...using the identity (p+q)(pq)=p2q2.

=sin2Acos2Bsin2Bcos2A

=sin2A(1sin2B)sin2B(1sin2A)

...using sin2θ+cos2θ=1 (Pythagoras)

=sin2Asin2Bsin2Asin2B+sin2Bsin2A

=sin2Asin2B