How do you simplify #(12xy^4)/(8x^2y^3)#?

1 Answer
Jul 6, 2015

#(3y)/(2x)# with #(x!=0, y!=0)#

Explanation:

#(12xy^4)/(8x^2y^3)# Note : #(x!=0, y!=0)#

Decompose the expression :

#(12xy^4)/(8x^2y^3) = (2*2*3*x*y*y*y*y)/(2*2*2*x*x*y*y*y)#

And cancels pairs :

#(color(green)(cancel(2)*cancel(2)*3)*color(blue)(cancel(x))*color(red)(cancel(y)*cancel(y)*cancel(y)*y))/(color(green)(cancel(2)*cancel(2)*2)*color(blue)(cancel(x)*x)*color(red)(cancel(y)*cancel(y)*cancel(y))) = (3y)/(2x)#

Then : #(12xy^4)/(8x^2y^3) = (3y)/(2x)# with #(x!=0, y!=0)#