How do you verify #sec(x+y)= (secx secy)/(1-tanxtany)#?

2 Answers
Jul 20, 2015

Verify #(sec x.sec y)/(1 - tan x.tan y) = sec (x + y)#

Explanation:

#((1/cos x)(1/cos y))/((1 - (sin x.sin y)/(cos x.cos y))# =

= #1/(cos x.cos y - sin x.sin y) = 1/cos (x + y) =# #sec (x + y)#

Jul 20, 2015

Let us start with, x = #30^0# = y.
we shall show that both left hand side and right hand side equal in value to 2

Explanation:

L.H.S. = sec ( #30^0# + #30^0#) = # sec 60 ^0# = 2 .. (1)
R.H.S. = sec#30^0#sec#30^0# / [1 - #tan 30^0 tan 30^0#]
= (2 / #sqrt 3#)(2 / #sqrt 3#) / [ 1 - (1/#sqrt3# )(1/#sqrt3# )]
= (4/3) / {1 - 1/3}
= (4/3)x(3/2)
= 2 ....(2)
From (1) and (2) LHS = RHS.
Hence the verification is complete.