How do you verify (1-cos2x)/ tanx = sin2x?

2 Answers
Aug 6, 2015

\frac{1-cos 2x}{tan x} = \frac{2sin^2 x}{tan x} = 2sin x cos x = sin 2x

Explanation:

cos2x = cos^2 x-sin^2 x = 1 - 2sin^2 x
sin 2x = 2sin x cos x
tan x = \frac{sin x}{cos x}

\frac{1-cos 2x}{tan x} = \frac{2sin^2 x}{tan x} = 2sin x cos x = sin 2x

Aug 7, 2015

Starting with (1-cos2x)/(tanx) = sin2x and using the identity (1-cos2x)/2 = sin^2x:

= (2sin^2x)/(tanx) = sin2x

Of course, tanx = (sinx)/(cosx):

= (2cosxsin^cancel(2)x)/(cancel(sinx)) = sin2x

and:

2sinxcosx = sinxcosx + cosxsinx
= sin(x+x) = sin2x:

=> color(blue)(sin2x = sin2x)