How do you solve cos 2x- sin^2 (x/2) + 3/4 = 0?

1 Answer
Aug 10, 2015

Cosx=1/2 and cosx=-3/4

Explanation:

Step 1:
cos2x-Sin^2(x/2)+3/4=0
Use cos2x=cos^2x-sin^2x

Step 2:
cos^2x-sin^2x-sin^2(x/2)+3/4=0
Use sin^2x+cos^2x=1

Step3:
2cos^2x-1-sin^2(x/2)+3/4=0
Use cosx=1-2sin^2(x/2) (Double angle formula).

Step 4:
2cos^2x-1-1/2+1/2cosx+3/4=0
2cos^2x+2cosx-3=0

Multiply by 4 to get

8cos^x+2cosx-3=0

Step 5: Solve the quadratic equation to get

(2cos-1)(4cosx+3)=0
cosx=1/2 and cosx=-3/4