How do you find the general solutions for sqrt{3}(sin(x)) + cos(x) = 1?

1 Answer
Aug 12, 2015

x = (6n+(-1)^n-1)pi/6, " " n in ZZ

Explanation:

R = sqrt(a^2+b^2)
a sin x + b cos x = R(a/R sin x + b/R cos x) = R sin (x + alpha)
where a/R = cos alpha and b/R = sin alpha such that alpha = arctan (b/a)

sqrt(3) sin x + cos x = 2 sin (x + pi/6) = 1
sin (x + pi/6) = 1/2

x + pi/6 = npi + (-1)^npi/6, " " n in ZZ
x = (6n+(-1)^n-1)pi/6, " " n in ZZ