How do you prove the identity cscθ−1cotθ=cotθcscθ+1? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer dani83 Aug 19, 2015 sin2A+cos2A=1 1+cot2A=csc2A cscθ−1cotθ=(cscθ−1)(cscθ+1)cotθ(cscθ+1)=csc2θ−1cotθ(cscθ+1)=cotθcscθ+1 Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 10683 views around the world You can reuse this answer Creative Commons License