The first part:
#(pq)/(1-q)#
# = (tanx tany cos(x + y)) / (1 - tanx tany)#
Using the identities #tanx = sinx/cosx# and #cos(x+y) = cosxcosy - sinxsiny# on the numerator and denominator, and cross-multiplying in the denominator:
#= ({(sinx siny)/(cancel(cosx cosy))}cancel({ cosx cosy - sinx siny})) / [(cancel(cosx cosy - sinx siny))/ (cancel(cosx cosy))]#
#= sinx siny#
The second part:
#(q (1 +p))/(1 - p)#
#= (cosx cosy - sinx siny) [(1 + tanx tany)/ (1 - tanx tany)] #
From here we can do the following:
#(1 + tanx tany)/ (1 - tanx tany) = (1+(sinxsiny)/(cosxcosy))/(1-(sinxsiny)/(cosxcosy))#
Cross-multiply to get:
#= (((cosxcosy)+(sinxsiny))/(cancel(cosxcosy)))/(((cosxcosy)-(sinxsiny))/(cancel(cosxcosy)))#
#= (cosxcosy+sinxsiny)/(cosxcosy-sinxsiny)#
Thus, we have:
#= cancel((cosx cosy - sinx siny)) [ (cosx cosy + sinx siny)/ cancel((cosx cosy - sinx siny))]#
#= cosx cosy + sinx siny #
#= cos (x - y)#