How do you find the indefinite integral of #int e^(2x)sin(7x)dx#?

1 Answer
Sep 20, 2015

#1/53e^(2x)(2sin 7x-7cos 7x)+C#

Explanation:

Integration by parts:

#intudv=uv-intvdu#

#I=inte^(2x)sin 7xdx#

#e^(2x)=u => 2e^(2x)dx=du#
#dv=sin 7xdx => v=intsin 7xdx=-1/7cos 7x#

#I=-1/7e^(2x)cos 7x+2/7inte^(2x)cos 7xdx#

Again:

#e^(2x)=u => 2e^(2x)dx=du#

#dv=cos 7xdx => v=intcos 7xdx=1/7sin 7x#

#I=-1/7e^(2x)cos 7x+2/7[1/7e^(2x)sin7x-2/7inte^(2x)sin7xdx]#

#I=-1/7e^(2x)cos 7x+2/49e^(2x)sin7x-4/49inte^(2x)sin7xdx#

#I=-1/7e^(2x)cos 7x+2/49e^(2x)sin7x-4/49I#

#I+4/49I=-1/7e^(2x)cos 7x+2/49e^(2x)sin7x#

#53/49I=-1/7e^(2x)cos 7x+2/49e^(2x)sin7x#

#I=-7/53e^(2x)cos 7x+2/53e^(2x)sin7x+C#

#I=1/53e^(2x)(2sin 7x-7cos 7x)+C#