How can you find the taylor expansion of #f(x) =sinx# about x=0?

1 Answer
Sep 28, 2015

See the explanation.

Explanation:

#f(x-x_0)=sum_(k=0)^n f^((k))(x_0) (x-x_0)^k/(k!) + f^((k+1))(epsilon)(x-x_0)^(k+1)/((k+1)!)#

In our case #x_0=0# so:

#f(x)=sum_(k=0)^n f^((k))(0) x^k/(k!) + f^((k+1))(epsilon)x^(k+1)/((k+1)!)#

#f(x)=sinx#
#f(0)=0#
#f'(x)=cosx => f'(0)=1#
#f''(x)=-sinx => f''(0)=0#
#f^((3))(x)=-cosx => f^((3))(0)=-1#
#f^((4))(x)=sinx => f^((4))(0)=0#
and so on....

#sinx= 0 + 1*x/(1!) + 0 - 1*x^3/(3!) + 0 + 5*x/(5!) +0 - 1*x^7/(7!)...#

#sinx = sum_(k=0)^oo (-1)^k x^(2k+1)/((2k+1)!)#