How do you factor #5x^2-5/2x+1/5=0#?

1 Answer
Sep 28, 2015

#x_1 =2/5#
#x_2=1/10#

Explanation:

quadratic formula :
#x_1,_2 =(-b+- sqrt(b^2-4ac))/(2a)#

simplify equation by multiplying both sides with 10
#50x^2-25x+2=0#

here, a=50, b=-25, c=2

using quadratic formula
#x_1,_2=(-(-25)+- sqrt((-25)^2-50*2))/(2*50)#

After solving,
#x_1=(25+ sqrt(225))/(100) = 2/5#
#x_2=(25- sqrt(225))/(100) = 1/10#