Question #5d213

1 Answer
Sep 28, 2015

See the explanation.

Explanation:

f(x)=sum_(k=0)^n f^((k))(0) x^k/(k!) + f^((n+1))(epsilon)x^(n+1)/((n+1)!)f(x)=nk=0f(k)(0)xkk!+f(n+1)(ε)xn+1(n+1)!

f(x)=cos^2xf(x)=cos2x

f(0)=1f(0)=1
f'(x)=-2cosxsinx=-sin2x => f'(0)=0
f''(x)=-2cos2x => f''(0)=-2
f^((3))(x)=4sin2x => f^((3))(0)=0
f^((4))(x)=8cos2x => f^((4))(0)=8
f^((5))(x)=-16sin2x => f^((5))(0)=0
f^((6))(x)=-32cos2x => f^((6))(0)=-32

and so on...

f(x)=f(0)+f'(0) x^1/(1!)+f''(0) x^2/(2!)+f^((3))(0) x^3/(3!)+...

f(x)=1+0-2x^2/(2!)+0+8x^4/(4!)+0-32x^6/(6!)+....
f(x)=1+0-2^1x^2/(2!)+0+2^3x^4/(4!)+0-2^5x^6/(6!)+....
f(x)=1+0-2^(2-1)x^2/(2!)+0+2^(4-1)x^4/(4!)+0-2^(6-1)x^6/(6!)+....

f(x)=1+sum_(k=1)^oo (-1)^k 2^(2k-1) x^(2k)/((2k)!)