Since #sin (3x) + sin(x)#
# = 2 sin (2x) cos(x) color(white)("XXX")#(See note below if this is not obvious)
#=> sin(x) + sin(2x) + sin(3x)#
#color(white)("XXX")= [sin(3x)+sin(x)] + sin(2x)#
#color(white)("XXX")=[2sin(2x)cos(x)] +sin(2x)#
#color(white)("XXX") = sin(2x)( 2cos(x) + 1) #
#=># the equation reduces to
#sin( 2x) = 0# or #cos( x) = - 1/2#
If #sin( 2x) = 0 #
#color(white)("XXX")=> 2x = npi# .
If #cos( x) = - 1/2 #
#color(white)("XXX")#(within the interval #[0,360^@) = [0,2pi)#)
#color(white)("XXX")=> x = 120^@# or #x = 240^@#
#color(white)("XXXXXX") = ((2pi)/3)# or #((4pi)/3)#
Note
The transformation #sin(3x)+sin(x) = 2sin(2x)cos(x)#
is based on the formula:
#sin(A)+sin(B) = 2sin((A+B)/2)*cos((A-B)/2)#