How do you simplify #n^6 * (n^-2)^5#?

2 Answers
Nov 4, 2015

#n^6*(n^-2)^5=1/n^4#

Explanation:

#n^6*(n^-2)^5#

Simplify #(n^-2)^5# by applying the exponent rule #(a^m)^n=a^(m*n)#.

#n^6*n^(-2*5)=#

#n^6*n^-10#

Simplify by applying the exponent rule #a^m*a^n=a^(m+n)#.

#n^6*n^-10=#

#n^(6+-10)=#

#n^-4#

Apply the exponent rule #a^(-m)=1/a^m#.

#n^-4=1/n^4#

Nov 4, 2015

#1/n^4#

Explanation:

#n^6*(n^(-2*5))=n^6*n^(-10)=n^(6+(-10))=n^(-4)=1/n^4#