What is the derivative of #f(x)=(cos x)^(sin x)#?

1 Answer
Nov 9, 2015

#f'(x) = cos(x)^sin(x)[cos(x)^{cos(x)}-sin^2x/cosx]#

Explanation:

Use logaritmic differentiation or rewrite as #f(x) = e^(ln(cosx)^sinx)#

I'll use logarithmic because I think it is easier to read.

#y=(cosx)^sinx#

#lny = ln(cosx)^sinx = sinxln(cosx)#

Diefferentiate implicitely:

#1/y dy/dx = cosxln(cosx)+sinx[-sinx/cosx]#

Solve for #dy/dx#

#dy/dx = (cosx)^sinx[cosxln(cosx)-sin^2x/cosx]#

Rewrite the answer to taste.