How do you find the derivative of y=cos(x)y=cos(x) from first principle?
1 Answer
Using the definition of a derivative:
dy/dx = lim_(h->0) (f(x+h)-f(x))/h , whereh = deltax
We substitute in our function to get:
lim_(h->0) (cos(x+h)-cos(x))/h
Using the Trig identity:
cos(a+b) = cosacosb - sinasinb ,
we get:
lim_(h->0) ((cosxcos h - sinxsin h)-cosx)/h
Factoring out the
lim_(h->0) (cosx(cos h-1) - sinxsin h)/h
This can be split into 2 fractions:
lim_(h->0) (cosx(cos h-1))/h - (sinxsin h)/h
Now comes the more difficult part: recognizing known formulas.
The 2 which will be useful here are:
lim_(x->0) sinx/x = 1 , andlim_(x->0) (cosx-1)/x = 0
Since those identities rely on the variable inside the functions being the same as the one used in the
lim_(h->0) (cosx(cos h-1))/h - (sinxsin h)/h
becomes:
lim_(h->0)cosx((cos h-1)/h) - sinx((sin h)/h)
Using the previously recognized formulas, we now have:
lim_(h->0) cosx(0) - sinx(1)
which equals:
lim_(h->0) (-sinx)
Since there are no more