How do you find the derivative of y=cos(cosx) ?

1 Answer
Apr 5, 2018

dy/dx=sinx*sin(cosx)

Explanation:

First from the differentiation of trigonometric functions :

d/dx cosx=-sinxdx

d/dxcosu=-sinu*du

Where u is a function of x

so when You differentiate y=cos(cosx)

You get the following:

dy= -sin(cosx)dcosx

which gives You:

dy=(-sin(cosx))*(-sinx*dx)

and by simpilification you get:

dy/dxcosx=sinx*sin(cosx)