How do you find int 3/((1 + x)(1 - 2x))dx using partial fractions?

1 Answer
Nov 15, 2015

ln( (1 + x) / (1 - 2x)) + C

Explanation:

Let 3 /( (1 + x) * (1 - 2x)) be = (A /(1 + x) + B / (1 - 2x))

Expanding the Right hand side, we get
(A * (1 - 2x) + B * (1 + x)) / ((1 + x) * (1 - 2x)
Equating, we get
(A * (1 - 2x) + B * (1 + x)) / ((1 + x) * (1 - 2x) = 3 /( (1 + x) * (1 - 2x))

ie A * (1 - 2x) + B * (1 + x) = 3
or A - 2Ax + B + Bx = 3
or (A + B) + x*(-2A + B) = 3
equating the coefficient of x to 0 and equating constants, we get

A + B = 3 and
-2A + B = 0
Solving for A & B, we get
A = 1 and B = 2
Substituting in the integration, we get
int 3 /( (1 + x) * (1 - 2x))dx = int (1 /(1 + x) + 2 / (1 - 2x)) dx

= int(1 / (1 + x)) dx + int(2 / (1 - 2x))dx

= ln(1 + x) + 2 * ln(1 - 2x) * (-1 / 2)

= ln(1 + x) - ln(1 - 2x)

= ln((1 + x) /(1 - 2x)) + C