How do you find int 3/((1 + x)(1 - 2x))dx3(1+x)(12x)dx using partial fractions?

1 Answer
Nov 15, 2015

ln( (1 + x) / (1 - 2x)) + Cln(1+x12x)+C

Explanation:

Let 3 /( (1 + x) * (1 - 2x))3(1+x)(12x) be = (A /(1 + x) + B / (1 - 2x))(A1+x+B12x)

Expanding the Right hand side, we get
(A * (1 - 2x) + B * (1 + x)) / ((1 + x) * (1 - 2x)A(12x)+B(1+x)(1+x)(12x)
Equating, we get
(A * (1 - 2x) + B * (1 + x)) / ((1 + x) * (1 - 2x)A(12x)+B(1+x)(1+x)(12x) = 3 /( (1 + x) * (1 - 2x))3(1+x)(12x)

ie A * (1 - 2x) + B * (1 + x) = 3A(12x)+B(1+x)=3
or A - 2Ax + B + Bx = 3A2Ax+B+Bx=3
or (A + B) + x*(-2A + B) = 3(A+B)+x(2A+B)=3
equating the coefficient of x to 0 and equating constants, we get

A + B = 3A+B=3 and
-2A + B = 02A+B=0
Solving for A & B, we get
A = 1 and B = 2A=1andB=2
Substituting in the integration, we get
int 3 /( (1 + x) * (1 - 2x))dx3(1+x)(12x)dx = int (1 /(1 + x) + 2 / (1 - 2x)) dx(11+x+212x)dx

= int(1 / (1 + x)) dx + int(2 / (1 - 2x))dx(11+x)dx+(212x)dx

= ln(1 + x) + 2 * ln(1 - 2x) * (-1 / 2)ln(1+x)+2ln(12x)(12)

= ln(1 + x) - ln(1 - 2x)ln(1+x)ln(12x)

= ln((1 + x) /(1 - 2x)) + Cln(1+x12x)+C