How do you find 3(1+x)(12x)dx using partial fractions?

1 Answer
Nov 15, 2015

ln(1+x12x)+C

Explanation:

Let 3(1+x)(12x) be = (A1+x+B12x)

Expanding the Right hand side, we get
A(12x)+B(1+x)(1+x)(12x)
Equating, we get
A(12x)+B(1+x)(1+x)(12x) = 3(1+x)(12x)

ie A(12x)+B(1+x)=3
or A2Ax+B+Bx=3
or (A+B)+x(2A+B)=3
equating the coefficient of x to 0 and equating constants, we get

A+B=3 and
2A+B=0
Solving for A & B, we get
A=1andB=2
Substituting in the integration, we get
3(1+x)(12x)dx = (11+x+212x)dx

= (11+x)dx+(212x)dx

= ln(1+x)+2ln(12x)(12)

= ln(1+x)ln(12x)

= ln(1+x12x)+C