What is the derivative of y=x^lnx?

1 Answer
Dec 16, 2015

(2x^(lnx)lnx)/x

Explanation:

Take natural log of both sides

lny=lnx^(lnx)

Rewrite write hand side using properties of logarithms

lny=lnx(lnx)

lny=(lnx)^2

Differentiate both sides with respect to x

1/y(dy)/dx=2lnx(1/x)

1/y(dy)/dx=(2lnx)/x

Multiply both sides by y

(dy)/dx=y((2lnx)/x)

Note that y=x^(lnx) so we write

(dy)/dx=x^(lnx)((2lnx)/x)

(dy)/dx=(2x^(lnx)lnx)/x