How do you differentiate f(x)=e^tan(1/x^2) using the chain rule?

1 Answer
Dec 23, 2015

Use substitution

Explanation:

f(x) = e^(tan(1/x^2))
Assume t=1/x^2 then p = tan(t) then
f(p) = e^p
(df)/(dx) = (df)/(dp) * (dp)/(dt) *(dt)/(dx)
= e^p*sec^2t *(-2/x^3)
Now back substitute

= e^(tan(1/x^2)) \times sec^2(1/x^2) \times ((-2)/x^3)

Another approach

Take ln on both sides
ln(f(x)) = tan(1/x^2)

Now differentiate both sides

1/f \times (df)/(dx) = sec^2(1/x^2) \times ((-2)/x^3)
(df)/(dx) = f \times sec^2(1/x^2) \times ((-2)/x^3)
= e^(tan(1/x^2)) \times sec^2(1/x^2) \times ((-2)/x^3)