How do you find the compositions given f(x)=8x1 and g(x)=x2?

2 Answers
Jan 7, 2016

g(f(x))=gf=8x12=4x12
f(g(x))=fg=8x21=4x1

Explanation:

You can think:
a)
y=f(x)=8x1
z=g(y)=y2
z=h(x)=g(f(x))=8x12=4x12

b)
y=g(x)=x2
z=f(y)=8y1
z=h(x)=f(g(x))=8x21=4x1

Remember that:

gffg

Jan 7, 2016

Substitute the expression for g(x) in place of x in the definition of f(x) to find: (fg)(x)=4x1

Similarly find: (gf)(x)=4x12

Explanation:

(fg)(x)=f(g(x))=f(x2)=8(x2)1=4x1

(gf)(x)=g(f(x))=g(8x1)=(8x1)2=4x12