What is the domain and range of y=sqrt(x^2 - 2x + 5)?

1 Answer
Jan 7, 2016

domain:

]-oo,+oo[

range:
]0,+oo[

Explanation:

Domain:

The real conditions for:

y=sqrt(h(x))

are:

h(x)>=0

then:

x^2-2x+5>=0

x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)=(2+-sqrt(4-20))/(2)=(2+-sqrt(-16))/(2)=
=1+-2i

Then
h(x)>0 AAx in RR

Range:
lim_(x rarr +-oo) f(x)=lim_(x rarr +-oo)sqrt(x^2-2x+5)=lim_(x rarr +-oo)sqrt(x^2)

=lim_(x rarr +-oo)x=+-oo

Remembering that:

x^2-2x+5>0 AAx in RR

Then the range is:

]0,+oo[