How do you solve sqrt(2x+5) - sqrt(x-2) = 3?

1 Answer
Jan 14, 2016

x=2 and x=38

Explanation:

Square both sides

(sqrt(2x+5)-sqrt(x-2))(sqrt(2x+5)-sqrt(x-2))=(3)^2

Expanding the left side we will have

(2x+5)-2sqrt(x-2)sqrt(2x+5)+(x-2)=9

Rewrite the product of the radicals on the left hand side

2x+5-2sqrt((x-2)(2x+5))+x-2=9

Combine like terms and expand under the radical on the left

3x+3-2sqrt(2x^2+x-10)=9

Subtract 9 from both sides and add 2sqrt(2x^2+x-10) to both sides

3x-6=2sqrt(2x^2+x-10)

Now square both sides

(3x-6)(3x-6)=(2sqrt(2x^2+x-10))^2

Expand

9x^2-36x+36=4(2x^2+x-10)

Distribute the 4 on the right side

9x^2-36x+36=8x^2+4x-40

Subtract 8x^2 from both sides

Subtract 4x from both sides

Add 40 to both sides

x^2-40x+76=0

This will factor to

(x-2)(x-38)=0

So x-2=0

x=2

or x-38=0

x=38