How do you find the derivative of #y = (1 + cos^2x) / (1 - cos^2x)#?
2 Answers
Explanation:
First of all, use the fact that
Thus,
So, you have the function
#f(x) = (1 + cos^2 x) / sin^2 x #
The quotient rule states that for
#f'(x) = (g'(x) h(x) - h'(x) g(x)) / (h^2(x))#
In your case, using the chain rule along the way, you get:
#g(x) = 1 + cos^2 x color(white)(xx) => color(white)(xx) g'(x) = - 2 cos x sin x#
#h(x) = sin^2 color(white)(xx) => color(white)(xx) h'(x) = 2 sin x cos x #
Now you need to use the quotient rule and you will get:
#f'(x) = (- 2 cos x sin x * sin^2 x - 2 sin x cos x (1 + cos^2 x) ) / (sin^4 x)#
# color(white)(xxxx) =(sin x * (- 2 cos x sin^2 x - 2 cos x (1 + cos^2 x) )) / (sin x * sin^3 x)# ...cancel
#sin x# ...
# color(white)(xxxx) =(cancel(sin x) * (- 2 cos x sin^2 x - 2 cos x (1 + cos^2 x) )) / (cancel(sin x) * sin^3 x)#
# color(white)(xxxx) = (color(blue)(- 2 cos x sin^2 x) - 2 cos x color(blue)( - 2 cos x * cos^2 x)) / (sin^3 x)#
# color(white)(xxxx) = (color(blue)(- 2 cos x (sin^2 x + cos^2 x)) - 2 cos x ) / (sin^3 x)# ... use
#sin ^2 x + cos^2 x = 1# once more ...
# color(white)(xxxx) = (- 2 cos x- 2 cos x ) / (sin^3 x)#
# color(white)(xxxx) = (- 4 cos x) / (sin^3 x)#
Explanation:
Alternatively, to more simplify the computation:
therefore
Applying the Power Rule and Chain Rule
Alternatively
Using the Quotient Rule