What is the vertex form of y= 8x^2+17x+1 y=8x2+17x+1?

1 Answer
Jan 26, 2016

y =8 (x + 17/16 )^2 - 257/32 y=8(x+1716)225732

Explanation:

The vertex form of the trinomial is; y = a(x - h )^2 + ky=a(xh)2+k

where (h , k ) are the coordinates of the vertex.

the x-coordinate of the vertex is x = -b/(2a)=b2a

[from 8x^2 + 17x + 1 8x2+17x+1

a = 8 , b = 17 and c = 1 ]

so x-coord = -17/16 =1716

and y-coord = 8 xx (-17/16)^2 + 17 xx (-17/16) + 1 =8×(1716)2+17×(1716)+1

= cancel(8) xx 289/cancel(256) - 289/16 + 1

= 289/32 - 578/32 + 32/32 = -257/32

Require a point to find a: if x = 0 then y=1 ie (0,1)

and so : 1= a(17/16)^2 -257/32 = (289a)/256 -257/32

hence a = (256 + 2056)/289 = 8

equation is : y = 8( x + 17/16)^2 - 257/32